通过对复杂分子化学反应的量子模拟,他们进一步建立了不同力学性能与结构再取向之间的定量关系

基于量子化学的计算机模拟广泛地应用于现代化学反应过程的研究中。但是随着分子中原子数的增加,体系自由度的数目急剧地增长,这已经超越了经典超级计算机的计算能力。为了研究复杂分子的反应过程,可以利用量子模拟的方法,即通过精确控制和调节冷原子系统来模拟化学反应。  最近在中国科学院理论物理研究所副研究员石弢参加的一项研究工作(Nature
574,
215(2019))中,通过设计光晶格中的冷原子实现了量子化学的类比模拟。在化学反应过程中,分子的性质由它的外层电子结构决定,而电子之间存在着库仑相互作用。因此,量子化学类比模拟的一个至关重要的问题是如何实现中性原子间的库仑相互作用。我们知道,在电子系统中,两个电子通过传递一个虚光子产生库仑力。基于类似的机制,可以设计方案实现中性费米原子间的库仑相互作用。在这个方案中,利用在玻色原子背景中运动的费米原子模拟分子中的电子,同时通过外加激光场引起背景玻色原子从基态到激发态的跃迁。这些处于激发态的媒介玻色原子可以像光子一样在光晶格中自由传播,从而诱导费米原子间的相互作用。通过对激光场的频率和强度、原子碰撞的散射长度、以及原子色散关系的有效设计,可以实现费米原子间的库仑相互作用。  这个方案不仅可以用来模拟小分子,例如氢分子和氦分子,而且可以用于由多个原子形成的复杂分子间化学反应的量子模拟。通过对比在小分子系统中经典超级计算机的计算结果,可以验证这个量子化学模拟方案的有效性。在未来的工作中,通过对复杂分子化学反应的量子模拟,可以探索一些在现代经典超级计算机中难以研究的各种化学反应过程。

生物体是由材料组成的,力学性能是材料的基本性能指标。不断提高力学性能使其更好地满足实际应用需求是天然与人造材料发展的共同目标,同时也是它们面临的共性难题。在长期的自然选择与进化过程中,天然生物材料的组织结构与力学性能均得到了持续优化,使得生物体实现了对其生存环境的适应,甚至达到巧夺天工的效果。大自然不仅是天才的材料设计师,而且是人类的良师。从材料学与力学的角度揭示自然界中典型生物材料的组织结构以及赋予其优异性能的关键机理,提炼天然与人造材料共性的优化设计原则,能够为高性能人造材料的开发提供宝贵的启示。  近期,中国科学院金属研究所材料疲劳与断裂实验室项目研究员刘增乾和研究员张哲峰与美国加州大学伯克利分校、加州大学河滨分校、加州大学圣地亚哥分校、普渡大学等单位开展合作,在前期对多种典型生物材料的组织结构、力学性能与损伤机制系统研究的基础上,提炼出了若干天然与人造材料性能优化设计的共性原则,主要包括:梯度结构取向效应、原位结构再取向效应和多级“缝合”界面效应。他们揭示了以上设计原则的内在力学原理,并进一步提出了一系列新的力学理论,为新型高性能仿生材料的设计与研发提供了理论指导。  梯度结构取向效应:针对不同生物材料宏观外形与微观组织结构的取向变化,他们首次提出了新型材料组织结构取向梯度(Gradient
Structural
Orientation)的概念与设计原则,从材料力学的角度建立了梯度组织结构取向与刚度、强度、断裂韧性之间的系列定量关系,例如杨氏模量与取向角度之间具有如下定量关系。  在此基础上,他们阐明了梯度结构取向效应实现性能优化的力学原理,提炼了改善材料抵抗接触损伤能力的仿生设计新思路。研究表明:随着微观组织结构取向逐渐偏离所受外力的方向,材料的刚度和强度从表面到内部逐渐降低,而断裂韧性随着裂纹越来越偏离其容易扩展的I型应力面而逐渐增大,从而达到了表面刚强而内部柔韧的效果,有效减轻了接触应力对材料造成的损伤。  原位结构再取向效应:针对天然生物材料的各向异性组织结构,他们首次提出了生物材料通过原位结构再取向(Adaptive
Structural
Reorientation)实现力学性能全面优化的策略与设计原则。研究发现:自然界中的木材、鱼鳞、骨骼等不同生物材料的微观组织结构在拉伸条件下逐渐偏向外力,而在压缩条件下逐渐偏离外力。这种结构再取向效应不仅有利于改善材料的变形能力,而且能够带来不同力学性能的全面同步提升。在拉伸条件下,增强相与应力轴之间夹角的减小有利于提高材料的刚度和强度,同时裂纹的扩展路径逐渐偏离其容易扩展的最大正应力平面,使得材料的断裂韧性得以同步增强;而在压缩条件下,增强相所受的轴向分应力随着取向逐渐偏离外力而降低,并且其所受的横向束缚作用随之增强,这不仅有利于提高材料抵抗微观局部失稳与整体结构失稳的力学稳定性,而且赋予材料优异的劈裂韧性。他们进一步建立了不同力学性能与结构再取向之间的定量关系,例如,材料的劈裂韧性与压缩应变之间具有如下定量关系。  因此,生物材料可以利用原位结构再取向效应全面改善其在不同应力条件下的刚度、强度、力学稳定性与断裂韧性,从而克服这些性能在传统材料设计中常见的相互矛盾的制约关系。  多级“缝合”界面效应:针对颅骨、鱼鳞、穿山甲鳞片等不同生物材料中广泛存在的微观取向不断变化的锯齿形多级“缝合”界面结构(Hierarchical
Suture
Interface),他们从断裂力学的角度建立了评判裂纹与界面相互作用方式以及裂纹扩展路径的基本准则,首次提出多级“缝合”结构能够通过促进裂纹穿过界面而对界面起到增韧作用的新观点,并且揭示了“缝合”结构的微观几何形状和结构级数对界面韧性的影响与作用机理。研究发现:多级“缝合”结构能够促使裂纹与界面之间的夹角偏离其初始入射角度,并且提高裂纹沿界面扩展路径的复杂崎岖程度,从而显著降低驱使裂纹持续沿界面偏转的有效应力强度因子。例如:裂纹尖端促使裂纹穿过界面与沿界面偏转的有效应力强度因子之比为:  多级“缝合”结构使得裂纹更加倾向于穿过界面而不是进入界面扩展,因此对界面起到有效的增韧作用,并且界面的增韧效果会随着锯齿的尖锐程度以及结构级数的增加而显著增强。他们进一步提出了特征临界应力强度因子比值的概念,该参数能够定量反映多级“缝合”结构对界面的增韧效果以及界面的几何形状和结构级数的影响。

近日,福建省食品药品质量检验研究院2019年食品药品能力建设仪器设备采购项目中标结果公布。据悉该项目预算1191万元,实际中标金额为957.89万元,采购液相色谱质谱联用仪、气相色谱质谱联用仪、热分析仪、X射线粉末衍射仪等仪器设备,中标企业全部分国外企业。  详情如下:  1、项目编号:[3500]HM[GK]2019073  2、项目名称:福建省食品药品质量检验研究院2019年食品药品能力建设仪器设备采购项目(1500万)3、项目预算为:1191万元  3、采购人:福建省食品药品质量检验研究院  4、定标日期:2019年12月11日  合同包  品目号  品目名称  商品名称  品牌  规格型号  数量  单价  总价  1  1-1  质谱仪  液相色谱质谱联用仪  Thermo
Scientific  Q Exactive
Plus  1  5978900元  5978900元  2  2-1  质谱仪  气相色谱质谱联用仪  安捷伦  8890-5977B  1  999000元  999000元  3  3-1  物理特性分析仪器及校准仪器  热分析仪  梅特勒-托利多  DSC3+TGA2  1  950000元  950000元  5  5-1  试验箱及气候环境试验设备  恒温培养箱  雅马拓  IQ822C  3  59000元  177000元  6  6-1  试验箱及气候环境试验设备  双开门低温培养箱  Memmert  IPP750plus  2  159000元  318000元  7  7-1  其他试验仪器及装置  微波消解仪  Anton
Paar  Multiwave
PRO  1  448000元  448000元  8  8-1  分析天平及专用天平  电子天平(注:万分之一以上)  梅特勒-托利多  XPR56  1  318000元  318000元  9  9-1  试验箱及气候环境试验设备  低温培养箱  BINDER  KB400  3  130000元  390000元

发表评论

电子邮件地址不会被公开。 必填项已用*标注